Chem. Ber. 102, 435-442 (1969)

Reinhard Nast, Gerhard Wallenwein und Manfred Ohlinger

Alkalisalze des o-Diäthinylbenzols

Aus dem Institut für Anorganische Chemie der Universität Hamburg (Eingegangen am 1. August 1968)

Aus dem in flüssigem Ammoniak schwach sauren o- $C_6H_4(C=CH)_2$ ($K_{S_1} \simeq 7 \cdot 10^{-6}$) werden durch die Neutralisationsreaktion (1) sowie die Verdrängungsreaktionen (2), (3) die Alkalisalze o- $C_6H_4(C=CM)_2$ (M=Li bis Cs) rein dargestellt und ihre IR-Spektren diskutiert. Durch konduktometrische Titration in flüssigem Ammoniak wird die intermediäre Bildung der Monoalkalisalze bei der Neutralisationsreaktion (1) nachgewiesen.

Das von $Deluchat^{1)}$ erstmals isolierte o-Diäthinylbenzol $C_6H_4(C \equiv CH)_2$ bildet mit Cu^I - und Ag^I -Ionen schwerlösliche Fällungen, von denen die Ag-Verbindung durch Metallanalyse als $C_6H_4(C \equiv CAg)_2$ identifiziert wurde $^{1)}$.

Das Ziel der vorliegenden Untersuchung war es, ammoniaklösliche Alkalisalze des o-Diäthinylbenzols (H₂ODB) vom Typ M₂ODB (M = Alkalimetall-Ion, ODB = o-C₆H₄(C \equiv C \mid O₂) darzustellen.

Diese Verbindungen sollten als Ausgangsprodukte für weitere Umsetzungen in flüssigem Ammoniak dienen, mit dem Ziel der Darstellung chelatartiger Acetylide.

Zur Darstellung des o-Diäthinylbenzols wurde ein neueres Verfahren ²⁾ benutzt, das ausgehend vom o-Xylol zum o-Divinylbenzol führt, aus dem durch Bromierung und anschließende HBr-Abspaltung schließlich H₂ODB gebildet wird. Gelegentlich wurde zur Darstellung des o-Divinylbenzols auch das vom Phthaldialdehyd ausgehende Verfahren von Wittig verwendet³⁾.

Das stets als farblose Flüssigkeit erhaltene o-Diäthinylbenzol, das den in der Literatur $^{2)}$ angegebenen Brechungsindex besitzt, ist selbst bei -30° unter trockenem Stickstoff nur wenige Tage farblos haltbar. Bei Raumtemperatur färbt sich die Flüssigkeit innerhalb einiger Stunden intensiv rot. Im ESR-Spektrum tritt dann ein einziges Signal mit der Halbwertsbreite von 18.5 Gauß auf. In Analogie zu ähnlichen Befunden am 2.4.6-Triisopropylphenylacetylen $^{4)}$ kann das Auftreten von Radikalen des Typs

angenommen werden.

¹⁾ Deluchat, C. R. hebd. Séances Acad. Sci. 192, 1387 (1931).

²⁾ O. M. Behr, G. Eglinton, A. R. Galbraith und R. A. Raphael, J. chem. Soc. [London] 1960, 3614.

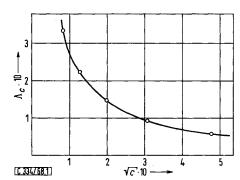
³⁾ G. Wittig, H. Eggers und P. Duffner, Liebigs Ann. Chem. 619, 10 (1958).

⁴⁾ H. Tani, M. Tanabe und F. Toda, Chem. and Ind. 1963, 1589.

Elektrolytcharakter und Säurenatur des o-Diäthinylbenzols in flüssigem Ammoniak

Das H₂ODB erwies sich als leicht löslich in flüssigem Ammoniak, so daß Leitfähigkeitsmessungen in diesem Medium durchführbar waren.

Die in wäßriger Lösung extrem schwache Säurenatur terminaler Alkine wird in flüssigem Ammoniak durch zwei gegenläufig wirkende Faktoren beeinflußt. Einerseits wird durch die im Vergleich zum Solvens Wasser viel größere Protonenaffinität des Ammoniaks die Acidität potentieller Säuren stark vergrößert, wobei näherungsweise die Beziehung

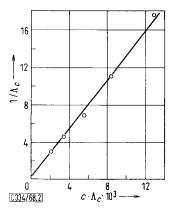

$$pK(NH_3) = pK(H_2O) - 12$$

gilt^{5,6)}.

Andererseits ist die Dissoziation einer Säure im flüssigen Ammoniak wegen der kleineren Dielektrizitätskonstanten dieses Lösungsmittels ($DK_{\mathrm{NH}_3} \simeq 23$, $DK_{\mathrm{H}_2\mathrm{O}} \simeq 80$) geringer als in Wasser.

Leitfähigkeitsmessungen an Lösungen von H₂ODB in flüssigem Ammoniak bestätigten dies.

Die nach dem Kohlrauschschen Quadratwurzelgesetz in Abbild. 1 aufgetragenen Leitfähigkeiten weisen das o-Diäthinylbenzol in diesem Solvens als schwachen Elektrolyten aus.


Abbild. 1. Äquivalentleitfähigkeit von o-Diäthinylbenzol in fl. NH₃ bei -33.4°

Es ist deshalb gerechtfertigt, das zweibasige H_2ODB in erster Näherung als binären Elektrolyten zu betrachten und die viel kleinere 2. Dissoziationsstufe zu vernachlässigen. Tatsächlich gehorchen die gemessenen Äquivalentleitfähigkeiten Λ_c dem für schwache binäre Elektrolyte in verdünnten Lösungen der jeweiligen Konzentration c gültigen Ostwaldschen Verdünnungsgesetz. Wie Abbild. 2 zeigt, liegen die Meßpunkte im $1/\Lambda_c/c \cdot \Lambda_c$ -Diagramm auf einer Geraden, wie es das Ostwaldsche Verdünnungsgesetz in Form der Geradengleichung

$$\frac{1}{\Lambda_c} = \frac{1}{\Lambda_0} + \frac{\mathbf{V} \cdot \mathbf{c}}{K_c \cdot \Lambda_0^2}$$

⁵⁾ W. J. Jolly und C. J. Hallada, Liquid Ammonia, in Non-Aqueous Solvent Systems, S. 23, edited by T. C. Waddington, Academic Press, London and New York 1965.

⁶⁾ G. Jander, H. Spandau, C. C. Addison, Chemie in nichtwäßrigen Lösungsmitteln, B. I, Teilb. 1, S. 297, F. Vieweg und Sohn, Braunschweig 1966.

Abbild. 2. Äquivalentleitfähigkeit von o-Diäthinylbenzol in fl. NH₃ bei -33.4°

fordert. Aus dem Ordinatenabschnitt der Geraden ergibt sich $1/\Lambda_0 = 0.10$, somit für die Äquivalentleitfähigkeit bei unendlicher Verdünnung $\Lambda_0 = 10$. Die Steigung der Geraden liefert den Wert $1/K_c\Lambda_0^2 = 1.35 \cdot 10^3$, woraus sich die für die Acidität des o-Diäthinylbenzols maßgebende 1. Säurekonstante

$$K_c = K_{S_1} = \frac{[H^+][HODB^-]}{[H_2ODB]} = 7.4 \cdot 10^{-6} \text{ (bei } -33.4^\circ)$$

errechnet. Diese konduktometrische Methode liefert naturgemäß nur einen *orientierenden* Wert für die Säurekonstante der Verbindung in flüssigem Ammoniak.

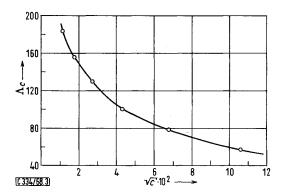
Eine Vergleichsmessung der Leitfähigkeit von Phenylacetylen in flüssigem Ammoniak ergibt keinen eindeutigen Kurvenverlauf, da die viel kleineren spezifischen Leitfähigkeiten schon in der Größenordnung der Eigenleitfähigkeit des flüssigen Ammoniaks liegen. Jedenfalls ist das o-Diäthinylbenzol in fl. NH₃ eine viel stärkere Säure als Phenylacetylen, was infolge der o-Stellung der beiden Äthinylgruppen auch zu erwarten ist.

2. Darstellung und Eigenschaften der Alkalisalze des o-Diäthinylbenzols vom Typ M₂ODB

Die Darstellung der Dialkalisalze des o-Diäthinylbenzols wurde zunächst in flüssigem Ammoniak durch Neutralisation mit Alkaliamiden nach Gleichung (1) versucht.

$$o\text{-C}_6\text{H}_4(\text{C}=\text{CH})_2 + 2 \text{ MNH}_2 \xrightarrow{\text{fl. NH}_3} o\text{-C}_6\text{H}_4(\text{C}=\text{CM})_2\downarrow + 2 \text{ NH}_3$$
 (1)
 $(M=\text{K, Rb, Cs})$

Dieses Verfahren erwies sich als anwendbar zur Darstellung der in fl. NH₃ ausfallenden K-, Rb- und Cs-Salze.


Das in fl. NH₃ leichtlösliche Dinatriumsalz wurde durch die Verdrängungsreaktion (2) rein erhalten, während das Dilithiumsalz aus Phenyllithium in absol. Tetrahydrofuran gemäß (3) gewonnen wurde.

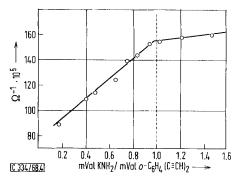
$$o\text{-}C_6H_4(C \equiv CH)_2 + 2 \text{ NaC} \equiv CH \xrightarrow{\text{fl. NH}_3} o\text{-}C_6H_4(C \equiv CNa)_2 + 2 C_2H_2 \uparrow$$
 (2)

$$2 C_6 H_5 Li + o - C_6 H_4 (C = CH)_2 \xrightarrow{THF} o - C_6 H_4 (C = CLi)_2 \downarrow + 2 C_6 H_6$$
 (3)

Die so erhaltenen farblosen kristallinen Dialkalisalze des o-Diäthinylbenzols sind zwar thermisch stabiler als H₂ODB, zersetzen sich jedoch, auch in trockener N₂-Atmosphäre aufbewahrt, innerhalb einer Woche unter allmählicher Braunfärbung. Bei trockenem Erhitzen verpuffen sie unter Entflammung. Infolge der nur schwachen Säurenatur von H₂ODB werden dessen Salze von allen protonenaktiven Lösungsmitteln (H₂O, Methanol, Äthanol) rasch protolysiert. Die Hydrolyse mit Wasser verläuft dabei unter Feuererscheinung.

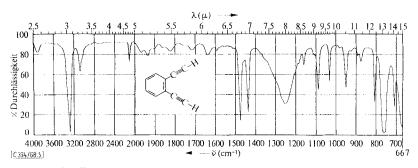
Leitfähigkeitsmessungen an dem in fl. NH₃ leichtlöslichen Na₂ODB und am mäßig löslichen K₂ODB (Abbild. 3) zeigen die schwache Elektrolytnatur dieser Verbindungen.

Abbild. 3. Äquivalentleitfähigkeit von $o-C_6H_4(C = CK)_2$ in fl. NH₃ bei -33.4°


Die Äquivalentleitfähigkeiten beider Salze unterscheiden sich praktisch nicht, sie liegen jedoch bei vergleichbaren Konzentrationen etwa um den Faktor 10^2 höher als die entsprechenden Λ_c -Werte des Dialkins H_2ODB .

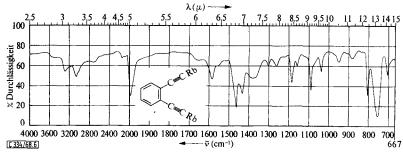
Die im Vergleich zum o-Diäthinylbenzol erhöhte thermische Stabilität seiner Dialkalisalze ist zweifellos auf die Mesomeriefähigkeit des ODB²-Anions gemäß 1-6 zurückzuführen.

Bei der Neutralisation des zweibasigen o- $C_6H_4(C=CH)_2$ mit Alkaliamiden nach Gl. (1) konnten stets nur die Dialkalisalze isoliert werden. Konduktometrische Titrationen von H_2ODB in fl. NH_3 mit Lösungen der Metallamide MNH_2 (M=K, Rb, Cs) im gleichen Solvens zeigen jedoch, daß die Neutralisation stufenweise erfolgt und zunächst nach der Gleichung


$$H_2ODB + MNH_2 \longrightarrow MHODB + NH_3$$
 (4)

die in fl. NH₃ leichtlöslichen Monoalkalisalze gebildet werden. Abbild. 4 zeigt eine hierfür typische Titrationskurve.

Abbild. 4. Konduktometrische Titration von o-Diäthinylbenzol mit KNH2


IR-Spektren: Für Vergleichszwecke wurde zunächst das IR-Spektrum von reinem flüssigen $C_6H_4(C = CH)_2$ vermessen (Abbild. 5), das an einem weniger reinen Präparat schon früher einmal aufgenommen worden war ²⁾.

Abbild. 5. IR-Spektrum des o-Diäthinylbenzols (rein, flüssig)

Die in diesem Zusammenhang besonders interessierenden $\nu_{\equiv C-H^-}$ und $\nu_{C\cong C^-}$ Frequenzen liegen bei 3268 und 2112/cm. Die zahlreichen unterhalb 2000/cm auftretenden Absorptionen sind durch Schwingungen der Phenylengruppe verursacht. So treten zwischen 1950 und 1550/cm die sog. "Benzolfinger" auf. Die Banden bei 1472 und 1438/cm sind den ω_{C-C} -Schwingungen zuzuordnen, während die breite bei 760/cm liegende Γ_{C-H} -Frequenz charakteristisch für orthosubstituierte Benzolderivate ist.

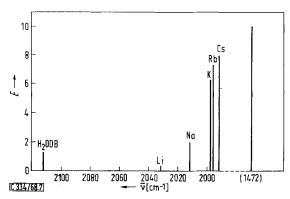
Die IR-Spektren der Dialkalisalze M_2ODB , beispielsweise das der Rb-Verbindung (Abbild. 6), stimmen hinsichtlich der Lage ihrer durch die Ringschwingungen verursachten Banden praktisch mit dem von H_2ODB überein, wobei die schwache $\nu_{\equiv C-H}$ -Frequenz durch oberflächliche Hydrolyse der Preßlinge verursacht ist.

Abbild. 6. IR-Spektrum von $o-C_6H_4(C=CRb)_2$ (KBr-Preßling)

Dagegen sind die $\nu_{C\equiv C}$ -Frequenzen der Dialkalisalze um so mehr in den langwelligen Teil des Spektrums verschoben, je größer der elektropositive Charakter des Metalls ist (Tab.).

 $v_{C \models C}$ -Frequenzen [cm⁻¹] von o-Diäthinylbenzol (H₂ODB) und dessen Alkalisalzen M₂ODB

H ₂ ODB	Li ₂ ODB	Na ₂ ODB	K₂ODB	Rb ₂ ODB	Cs ₂ ODB	
2112	2032	2012	1998	1996	1992	


Die gleiche Abhängigkeit der $v_{C\equiv C}$ -Frequenzen vom Ionencharakter wurde auch in den IR-Spektren anderer Alkaliacetylide $MC\equiv C-R$ (R=H, CH_3 , C_6H_5) beobachtet ⁷⁾. Auch die *Intensitäten der* $v_{C\equiv C}$ -Frequenzen erweisen sich als abhängig von der Elektronegativität des Metalls. Bezieht man die Extinktion E der $v_{C\equiv C}$ -Frequenzen auf die Extinktion der bei 1472/cm auftretenden ω_{C-C} -Frequenz als inneren Standard, so nehmen die Verhältnisse $E(v_{C\equiv C})$: $E(\omega_{C-C})$ in Richtung auf die Cs-Verbindung zu, wobei willkürlich $E(\omega_{C-C})=10$ gesetzt ist (Abbild. 7).

Zur Deutung dieser IR-spektroskopischen Befunde muß man annehmen, daß das höchste besetzte σ -Molekülorbital im freien ungestörten Acetylid-Ion $R-C\equiv C|^{\varphi}$ schwach antibindenden Charakter besitzt. Mit steigender Elektronegativität des Metalls, also vom Cs zum H, wird vorzugsweise das in diesem Orbital befindliche Elektronenpaar für die σ -Bindung zum Metall beansprucht. Die hierdurch bedingte zunehmende Entleerung des schwach antibindenden Molekülorbitals führt zu einer Vergrößerung der C \equiv C-Kraftkonstanten und damit zur beobachteten Frequenzerhöhung.

Mit zunehmender Ausbildung einer σ -Bindung zwischen dem Metall und dem freien $R-C\equiv C^{|\Theta|}$ -Ion wird die in letzterem vorliegende maximale Ladungsunsymmetrie abgebaut, wodurch sich der Abfall der Extinktionen der $\nu_{C\equiv C}$ -Schwingungen von der Cs- zur H-Verbindung erklärt $^{8)}$.

⁷⁾ R. Nast und J. Gremm, Z. anorg. allg. Chem. 325, 62 (1963).

⁸⁾ Den Herren Dr. R. Kramolowsky und Dr. K. Lottes danken wir für ihre Hilfe bei der Interpretation der IR-Spektren.

Abbild. 7. Lage und relative Extinktion der $v_{C\equiv C}$ -Frequenzen der Dialkalimetalle des o-Diäthinylbenzols (H₂ODB)

Für die Unterstützung dieser Arbeit danken wir der Deutschen Forschungsgemeinschaft, dem Verband der Chemischen Industrie sowie der Badischen Anilin- & Soda-Fabrik AG, Ludwigshafen.

Beschreibung der Versuche

Alle im folgenden beschriebenen Umsetzungen wurden in geschlossenen Apparaturen unter absolut wasserfreien Bedingungen durchgeführt.

Die C- und H-Werte wurden durch Halbmikro-Elementaranalyse ermittelt. Die quantitative Bestimmung der Alkalimetall-Ionen führten wir flammenphotometrisch durch, nachdem die Analysenprobe mit Wasser zersetzt und die organische Komponente durch Abrauchen mit einem Gemisch von konz. Schwefelsäure/Perhydrol zerstört worden war.

1. Dilithiumsalz von o-Diäthinylbenzol, o- $C_6H_4(C = CLi)_2 \cdot 0.5$ ($C_2H_5)_2O$: In einem Schlenk-Rohr wurde zu 25 ccm absol. Tetrahydrofuran eine äther. Lösung von 16 mMol *Phenyllithium* gegeben und hierzu im N₂-Gegenstrom unter Rühren bei -40° 4 mMol *o-Diäthinylbenzol* pipettiert. Nach einigen Sekunden trat ein farbloser Niederschlag auf, der nach 15 Min. über eine G4-Fritte abfiltriert, 3 mal mit je 10 ccm absol. Äther gewaschen und 1 Stde. bei Raumtemp. i. Hochvak. getrocknet wurde. Ausb. 80-90%.

2. Dinatriumsalz von o-Diäthinylbenzol, $o-C_6H_4(C = CNa)_2$: Zu einer filtrierten Lösung von 573 mg (11.9 mMol) NaC_2H in 50 ccm siedendem Ammoniak wurden im NH₃-Gegenstrom 753 mg (6.0 mMol) o-Diäthinylbenzol pipettiert und die Lösung auf $^{1}/_{3}$ des ursprünglichen Volumens eingeengt. Nach Zugabe von 30 ccm absol. Äther fiel sofort ein farbloser Niederschlag aus, der filtriert und mit 20 ccm absol. Äther gewaschen wurde. Nach 2stdg. Abpumpen i. Hochvak. bei Raumtemp. wurde das Dinatriumsalz in 60 proz. Ausb. erhalten.

C₁₀H₄Na₂ (170.0) Ber. Na 27.05 C 70.60 H 2.35 Gef. Na 26.8 C 71.0 H 2.7

3. Dikaliumsalz von o-Diäthinylbenzol, o- $C_6H_4(C = CK)_2$: Zu einer Lösung von 1.019 g (15.9 mMol) KC_2H in 50 ccm fl. NH₃ wurde im N₂-Gegenstrom 1.0 g (7.9 mMol) o-Diäthinylbenzol gegeben. Aus der klaren Lösung fiel nach etwa 10 Min. ein farbloser Niederschlag aus,

der bei -70° filtriert und zweimal mit je 30 ccm NH $_3$ gewaschen wurde. Das kristalline Produkt wurde nach 4stdg. Trocknen i. Hochvak. bei Raumtemp. in ca. 70 proz. Ausb. erhalten.

C₁₀H₄K₂ (202.3) Ber. K 38.67 C 59.35 H 1.98 Gef. K 38.8 C 59.2 H 2.05 Dieses Verfahren führt zu reineren Produkten als die Neutralisationsreaktion (1).

4. Dirubidiumsalz von o-Diäthinylbenzol, o- $C_6H_4(C = CRb)_2$: Zu einer Lösung von 1.26 g (12.3 mMol) $RbNH_2$ in 50 ccm siedendem NH₃ wurden 0.775 g (6.15 mMol) o-Diäthinylbenzol gefügt. Der nach wenigen Sekunden ausfallende farblose Niederschlag wurde 2 mal mit je 30 ccm fl. NH₃ gewaschen und i. Hochvak. bei Raumtemp. trockengepumpt. Ausb. 85%.

C₁₀H₄Rb₂ (295.1) Ber. Rb 57.95 C 40.70 H 1.35 Gef. Rb 57.1 C 41.1 H 1.8

5. Dicäsiumsalz von o-Diäthinylbenzol, o- $C_6H_4(C = CCs)_2$: Analog 4. aus 1.18 g (7.9 mMol) $CsNH_2$ und 500 mg (4 mMol) o-Diäthinylbenzol. Ausb. 85%.

C₁₀H₄Cs₂ (390.0) Ber. Cs 68.20 C 30.80 H 1.03 Gef. Cs 66.3 C 30.8 H 1.4

Die Leitfähigkeitsmessungen wurden in einer früher beschriebenen geschlossenen Apparatur⁹⁾ bei -33.4° vorgenommen.

Bei den konduktometrischen Titrationen wurde eine etwa 0.02 molare Lösung von o-Diäthinylbenzol in fl. NH₃ vorgelegt und mit einer etwa 0.2 molaren Lösung der Amide von K, Rb und Cs im gleichen Solvens bei konstant -50° titriert.

Zur Aufnahme der IR-Spektren wurden von den frisch dargestellten Dialkalisalzen KBr-Preßlinge unter trockener N₂-Atmosphäre hergestellt. Die Aufnahmen wurden mit einem Doppelstrahl-Ultrarot-Spektrometer von Perkin-Elmer (Modell 221) vorgenommen.

[334/68]

⁹⁾ R. Nast und K. Vester, Z. anorg. allg. Chem. 279, 146 (1955).